Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438036

RESUMO

Sewage sludge (SS) is rich in plant nutrients, including P, N, and organic C, but often contains toxic metals (TMs), which hinders its potential use in agriculture. The efficiency of removal of TMs by washing with ethylenediamine tetraacetate (EDTA), in combination with hydrodynamic cavitation (HC) and the usability of washed sewage sludge as fertilizer were investigated. The environmental risk was assessed. During 8 wash batches an average 35, 68, 47 and 45 % of Pb, Zn, Cd and Cu, respectively, as well as 22 and 5 % Mn and Fe were removed from the SS. The process solutions and EDTA were recycled at a pH gradient of 12.5-2, which was achieved by adding quicklime (CaO) and then acidification by H2SO4, so that no wastewater was produced, only solid waste (ReSoil® method). The quality of the recycled process solutions (they remained unsaturated with salts) and the efficiency of the washing process were maintained across all batches. On average, 46 % of the EDTA was lost during the process and was replenished. The initial leachability of EDTA-mobilized Pb, Zn, Cu, Cr and Fe remaining in the washed SS increased 6-, 17-, 3-, 11- and 11-fold, respectively, but not to hazardous levels except for Zn. After washing, P and K remained in the SS, plant-available P increased 3.3-fold, while total N and C were reduced by 20.28 and 2.44 %, respectively. Washed SS was used as fertilizer in the pot experiment. The yield of Brassica juncea did not improve, the uptake of TMs by the plants and the leaching of TMs from the soil were minimal. Our study highlighted the drawbacks and potential feasibility of the new SS washing method.


Assuntos
Metais Pesados , Poluentes do Solo , Esgotos , Metais Pesados/análise , Ácido Edético , Fertilizantes , Hidrodinâmica , Chumbo , Solo , Plantas , Poluentes do Solo/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-36767910

RESUMO

Contamination with toxic metals prevents the use of sewage sludge (SS) as a soil fertilizer. Hydrodynamic cavitation, thermal microwaving, microwave-assisted alkaline, and acid hydrolysis coupled with ethylenediaminetetraacetate (EDTA) washing were tested as a method to remove toxic metals from SS. Acid hydrolysis coupled with EDTA washing was most effective and was used in a closed-loop process based on ReSoil technology. EDTA and process solutions were recycled at a pH gradient of 12.5-2, which was imposed by the addition of quicklime (CaO) and H2SO4. An average of 78%-Pb, 76%-Zn, 1%-Cu, and 17%-Cr were removed from SS in five consecutive batches. No wastewater was generated, only solid waste (40%). The EDTA lost in the process (42%) was resupplied in each batch. In a series of batches, the process solutions retained metal removal efficiency and quality. The treatment removed 70% and 23% of P and N, respectively, from SS and increased the leachability of Zn, Cu, Mn, and Fe in the washed SS by 11.7, 6.8, 1.4, and 5.2 times, respectively. Acid hydrolysis coupled with EDTA washing proved to be a technically feasible, closed-loop process but needs further development to reduce reagent, material, and nutrient loss and to reduce toxic emissions from the washed sludge.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético , Metais Pesados/análise , Esgotos , Hidrólise , Solo , Poluentes do Solo/análise
3.
Chemosphere ; 307(Pt 2): 135917, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940403

RESUMO

Sewage sludge (SS) is a potential resource for P and other nutrients, but often contaminated with metals. SS containing Pb-102, Zn-968, Cu-267, Cr-101, Mn-222, and Fe-8374 mg kg-1 was washed in a batch process for 1 h with a recycled washing solution containing 50 mmol L-1 of recycled EDTA and 50 mmol L-1 H2SO4, solid/liquid ratio 1/7 (w/V). After solid/liquid separation, the washed SS was further rinsed 3-times with cleansed recycled solutions. EDTA and process solutions were recycled/cleansed in a pH gradient of 12.5-2.0 imposed by addition of CaO and H2SO4 (the ReSoil® method). EDTA, recycled as ineffective Ca-EDTA, was activated by capturing Ca with H2SO4. The process was closed-looped, no wastewater was generated, solid waste was centrifuged away. 10 consecutive SS washing batches preserved the quality of the process solutions. Metals were mainly removed from the SS organic fraction, the average removal was Pb-35, Zn-59, Cu-60, Cr-19, Mn-25, and Fe-1%. Washing reduced the leachability of Cu and Cr from SS by 13.4 and 3.5 times, but increased the leachability of Pb, Zn, Mn, and Fe by 2.5, 3.8, 1.9, and 1.6 times, respectively. Metal concentrations in the leachates were below the limits stipulated as hazardous. The content of accessible P and K in washed SS decreased by 24 and 45%, and the total N decreased by 10%. Overall, the results prove the feasibility of the novel SS washing process.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético/química , Chumbo , Metais Pesados/análise , Esgotos/química , Poluentes do Solo/análise , Resíduos Sólidos
4.
Environ Pollut ; 294: 118656, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890746

RESUMO

Soil chemistry of toxic metalloids and metals differs, making their simultaneous removal difficult. Soil contaminated with As, Pb, Zn and Cd was washed with oxalic acid, Na-dithionite and EDTA solution. Toxic elements were removed from the washing solution by alkalinisation with CaO to a pH 12.5: As was co-precipitated with Fe from Fe-EDTA chelate formed after the soil washing. The toxic metals precipitated after substitution of their EDTA chelates with Ca. The novel method was scaled up on the ReSoil® platform. On average, 60, 76, 29, and 53% of As, Pb, Zn, and Cd were removed, no wastewater was generated and EDTA was recycled. Addition of zero-valent iron reduced the toxic elements' leachability. Remediation was most effective for As: phytoaccessibility (CaCl2 extraction), mobility (NH4NO3), and accessibility from human gastric and gastrointestinal phases were reduced 22, 104, 6, and 51 times, respectively. Remediation increased pH but had no effect on soil functioning assessed by fluorescein diacetate hydrolysis, dehydrogenase, ß-glucosidase, urease, acid and alkaline phosphatase activities. Brassica napus produced 1.9 times more biomass on remediated soil, accumulated no As and 5.0, 2.6, and 9.0 times less Pb, Zn and Cd, respectively. We demonstrated the novel remediation technology as cost-efficient (material cost = 41.86 € t-1) and sustainable.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Ácido Edético , Humanos , Laboratórios , Metais Pesados/análise , Solo , Poluentes do Solo/análise
5.
Environ Sci Pollut Res Int ; 28(46): 65687-65699, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34322798

RESUMO

Two soils contaminated with potentially toxic metals (PTMs) contrasting in pH and mineralogy were remediated with CaEDTA, and changes in soil organic matter (SOM) composition were investigated. Previous studies showed no significant loss of SOM from CaEDTA-treated soils, but the results of our study reflected significant decreases (from 46 to 49%) in the free fraction of humic acids (HAs). Remediation affected the composition of the free HA fraction via disturbance of intermolecular bonds - an increase in phenolic and aromatic groups with a simultaneous decrease in carbohydrates - which was confirmed by FTIR spectroscopy in both soils. Because non-radical molecules such as carbohydrates were selectively removed, the concentration of free radicals in the free HA fraction increased in acidic soil. The bound fraction of HAs and fulvic acids (FAs) in SOM, which are important due to their stability and the permanent effects they have on the soil's physical properties, remained unchanged in both remediated soils. The effect of soil recultivation was observed only in the excitation emission matrix (EEM) fluorescence spectra of HAs. In terms of SOM, CaEDTA soil washing can be considered moderately conservative; however, the restoration of free humic fractions is likely to be a long-term process.


Assuntos
Poluentes do Solo , Solo , Ácido Edético , Substâncias Húmicas/análise , Poluentes do Solo/análise
6.
Sci Total Environ ; 792: 149060, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34325881

RESUMO

The viable chelator-based soil washing has yet to be demonstrated on a larger scale. Soil containing 1850, 3830 and 21 mg kg-1 Pb, Zn and Cd, respectively, was washed with 100 mmol EDTA kg-1 in a series of 16 batches (1 ton soil/batch) using the new ReSoil® technology. The ReSoil® recycled the process water and 85% of the EDTA, producing no wastewater and 14.4 kg ton-1 of waste. The soil washing removed 71, 28 and 53% of Pb, Zn and Cd, respectively, mainly from the carbonate fraction, saturated the soil with basic cations and increased the soil pH by up to 0.5 units. Raised beds (4 × 1 × 0.5 m) with original (contaminated) and remediated soil were constructed as lysmeters, and local produce was grown from July 2018 to November 2019. Throughout the gardening period, the concentration of Pb and Cd in the leachates from the remediated soil was lower and that of Zn was higher than in the original soil. Remediation decreased the concentration of plant-available and mobile toxic metals, as determined by CaCl2 and NH4NO3 extractions, and reduced the bioavailability of Pb, Zn, and Cd in the simulated human gastrointestinal phase by an average of 4.3, 1.7 and 2.7-fold, respectively. Revitalization with vermicompost, earthworms and rhizosphere soil, and spring fertilisation with compost and manure, had no significant effect on the mobility and accessibility of the toxic metals. The ReSoil® is a cost-effective technology (material cost = 18.27 € ton-1 soil) and showed the prospect of sustainable reuse of remediated soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Animais , Ácido Edético , Jardinagem , Jardins , Humanos , Solo , Poluentes do Solo/análise
7.
Sci Total Environ ; 792: 148522, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34187712

RESUMO

In this study, we evaluated the impact of washing of Pb, Zn and Cd contaminated soil using EDTA-based technology (ReSoil®) on soil biological properties by measuring some of the most commonly used/sensitive biological indicators of soil perturbation. We estimated the temporal dynamics of the soil respiration, the activities of soil enzymes (dehydrogenase, ß-glucosidase, urease, acid and alkaline phosphatase), and the effect of the remediation process on arbuscular mycorrhizal (AM) fungi in original (Orig), remediated (Rem) and remediated vitalized (Rem+V) soils during a more than one-year garden experiment. ReSoil® technology initially affected the activity level of soil microbial respiration and all enzyme activities except urease and reduced AM fungal potential in the soil. However, after one year of vegetable cultivation and standard gardening practices, soil microbial respiration, acid and alkaline phosphatase in the Rem and Rem+V reached similar activities as in the Orig. Only the activities of dehydrogenase and ß-glucosidase remained lower in the remediated soil compared to the Orig. The frequency of arbuscular mycorrhiza in the root system, arbuscular density in the colonized root fragment, and the intensity of mycorrhizal colonization in the colonized root fragments in the remediated treatments increased with time; at the end of the experiment, no consistent differences in these parameters of mycorrhizal colonization were found among the treatments. Our results suggest a restored biological functioning of the remediated soil after one year of vegetable cultivation. In general, no differences were found between the Rem and Rem+V treatments, indicating that simple common garden practices are sufficient to restore soil functioning after remediation.


Assuntos
Recuperação e Remediação Ambiental , Micorrizas , Poluentes do Solo , Ácido Edético , Biomarcadores Ambientais , Jardinagem , Micorrizas/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise
8.
Sci Total Environ ; 792: 148521, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34176648

RESUMO

In previous reports large-scale EDTA-based soil washing using ReSoil® technology was demonstrated. In the current study, we established a vegetable garden with nine raised beds (4 × 1 × 0.5 m), three with original (contaminated) soil, three with remediated soil, and three with remediated soil vitalized by addition of vermicompost, earthworms, and rhizosphere inoculum. The garden was managed in 6 rotations between July 2018 and November 2019. Buckwheat was sown first as a green manure followed by spinach, lamb's lettuce, chicory, garlic, onion, leek, lettuce, carrot, kohlrabi and spinach again. Buckwheat growth on the remediated soil was reduced by half. Throughout the gardening process there were no remarkable differences in bulk density, hydraulic conductivity, available water capacity, and aggregate stability of the original and remediated soil. Biomass yield and plant performance, as measured by NDVI, also remained similar regardless of soil treatment. Remediation reduced Pb concentration in edible parts of vegetables from 76 (garlic) to 95% (kohlrabi), Zn concentration from 14 (lettuce) to 76% (first cutting of chicory), and Cd concentration from 33% (carrot) to 91% (leek and second cutting of chicory). The transfer of metals from soil to root and from root to shoot occurred in the order: Pb < Zn < Cd. The bioconcentration of toxic metals in edible plant parts was generally lower in the remediated soils. Application of ReSoil® technology and growing vegetables that exclude metals, especially Cd, has potential for safe food production on remediated soils. Vitalization had little effect on the properties of the remediated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético , Jardinagem , Jardins , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Verduras
9.
Chemosphere ; 260: 127673, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32693264

RESUMO

Soils contaminated with Pb, Zn and Cd are hazardous. Persistent EDTA and biodegradable GLDA, EDDS and IDS have been used as chelators in the ReSoil soil washing technology, which recycles chelator and curbs toxic emissions. The washed soils supported similar growth of buckwheat (F. esculentum) and better growth of Chinese cabbage (B. rapa) compared with the original (not-remediated) soil. The growth of buckwheat on EDDS-washed soil was an exception and was 67% suppressed. The activities of enzymes of the plant antioxidant preventive system were assessed in roots and leaves of Chinese cabbage on all soils. Similar activities were measured, confirming that washed soils are not harmful to the plants. Plant uptake of potentially toxic elements was reduced from all washed soils, i.e. buckwheat grown on GLDA-washed soils accumulated up to 27 and 83 times less Pb and Cd than in the original soil. The initial Pb emissions in leachate from GLDA and IDS washed soils were up to 89 and 92% higher than those of the original soil, respectively. The latter emissions ceased to the levels measured in original, EDTA and EDDS washed soils. Soil physical properties (water holding capacity, aggregate stability) and soil functionality, assessed as soil respiration and activity of enzymes indicative for soil C, N and P cycle, were similar in all soils after 10 weeks of plant growth experiment. The overall results indicate a low impact of the remediation on soil quality. Soils washed with EDTA performed slightly better compared to GLDA-, EDDS- and IDS-washed soils.


Assuntos
Metais Pesados/química , Poluentes do Solo/química , Animais , Quelantes , Ácido Edético , Isópodes , Metais Pesados/análise , Desenvolvimento Vegetal , Reciclagem , Solo , Poluentes do Solo/análise
10.
Chemosphere ; 257: 127226, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32512332

RESUMO

In washing soils contaminated with toxic metals, the replacement of recalcitrant EDTA with biodegradable chelators has gained high expectations. Herein we investigated the feasibility of using EDTA and biodegradable GLDA, EDDS and IDS under conditions pertinent to operational remediation technology, in a pilot-scale experiment. GLDA and IDS did not precipitate from process solutions, which lessened their recyclability. In other process parameters, chelator supplement, Na-saturation of process solutions and processing time, EDTA outperformed biodegradable chelators. Treatment with EDTA was also the most effective in total Pb and Zn removal and least impacted soil properties. GLDA was slightly better in Cd removal. EDDS and IDS were inefficient. All chelators effectively removed easily-available Pb, Zn and Cd from the exchangeable soil fraction. EDTA was the most efficient chelator in reducing the bioaccessibility of Pb and GLDA in reducing the bioaccessibility of Cd from simulated human gastrointestinal tract. Treatment with GLDA had an edge in reducing plant bioaccessibility of toxic metals, but induced worrying leachability of Pb. This was 8.3-times higher than with the process with EDTA and 3.4-times higher than in original soil. In general, our results demonstrate the advantage of EDTA over tested biodegradable chelators in process and remediation efficiency and environmental safety.


Assuntos
Ácido Edético/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Animais , Quelantes , Estudos de Viabilidade , Isópodes , Metais Pesados/análise , Reciclagem , Solo , Poluentes do Solo/análise
11.
Chemosphere ; 237: 124513, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401429

RESUMO

The ability of contaminated farmland soils reclaimed by remediation to dissipate pesticides and thus to mitigate their unwanted environmental effects, i.e., leaching and run-off, was studied. Novel EDTA-based soil washing technology (EDTA and process waters recycling; no toxic emissions) removed 79 and 73% of Pb from acidic and calcareous soil with 740 and 2179 mg kg-1 Pb, respectively. The dissipation kinetics of four herbicides: mecoprop-P, isoproturon, bentazon and S-metolachlor was investigated under field conditions in beds with maize (Zea mays) and barley (Hordeum vulgare). The biphasic First-Order Multi-Compartment (FOMC) model was used to fit experimental data and calculate the herbicides' half-life (DT50) in soil. Remediation significantly (up to 64%) decreased dehydrogenase activity assessed as a marker of soil microbial activity and prolonged the DT50 of herbicides in acidic soils from 16% (isoproturon) to 111% (S-metachlor). Remediation had a less significant effect on herbicide dissipation in calcareous soils; i.e., mecoprop-P DT50 increased by 3%, while isoproturon and S-metachlor DT50 decreased by 29%. Overall, the dissipation from remediated soils was faster than the average DT50 of tested herbicides published in the Pesticides Properties DataBase. Results demonstrate that EDTA-based remediation of the studied soils does not pose any threat of extended herbicide persistence.


Assuntos
Ácido Edético/química , Herbicidas/análise , Metais Pesados/análise , Poluentes do Solo/análise , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/análise , Ácido 2-Metil-4-clorofenoxiacético/química , Acetamidas/análise , Acetamidas/química , Benzotiadiazinas/análise , Benzotiadiazinas/química , Recuperação e Remediação Ambiental , Herbicidas/química , Metais Pesados/química , Compostos de Fenilureia/análise , Compostos de Fenilureia/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Zea mays
12.
Chemosphere ; 215: 482-489, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30340156

RESUMO

The use of EDTA-based soil washing is prevented by chelant environmental persistence and the hazard of toxic post-remedial emissions. Calcareous and acidic soils with 828 and 673 mg Pb kg-1, respectively, and co-contaminated with Zn and Cd, were washed with 90 and 60 mM EDTA, respectively, to remove 67 and 80% of Pb. Washed soils were rinsed until 6.5 and 5.1 mM EDTA, respectively, was measured in the final rinsing solutions. Emissions of residual EDTA and chelated metals from remediated soils were mitigated by adsorption on zero-valent Fe (ZVI), which was added (0.5-1.5%, w/w) to the slurry of washed soil immediately before rinsing. ZVI addition prevented the initial post-remedial surge of toxic metals leachability and minimised toxic emissions from calcareous and acidic soil as soon as 6 and 7 days after remediation, respectively. The extractability/leachability of EDTA and toxic metals from remediated and ZVI amended soils diminished to close to emissions from the original soils, frequently below the limit of quantification by flame-AAS, and was not affected by the pH of the leaching solutions. Efficient curbing of toxic post-remediation emissions as demonstrated herein is of paramount importance for recognition of EDTA-based remediation as environmentally safe.


Assuntos
Quelantes/farmacologia , Recuperação e Remediação Ambiental/métodos , Ferro/farmacologia , Metais Pesados/isolamento & purificação , Cádmio/isolamento & purificação , Quelantes/química , Ácido Edético/química , Chumbo/isolamento & purificação , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Zinco/isolamento & purificação
13.
Environ Pollut ; 243(Pt A): 238-245, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30176497

RESUMO

Efficiency and the preservation of soil functions are key requirements for sustainable remediation of contaminated soil. Microbial decomposition and conversion of substrates is a fundamental soil function. Pilot-scale EDTA-based soil washing recycled chelant generated no wastewater and removed 78% of Pb from acidic farmland soil with 860 mg kg-1 Pb and 60% of Pb from calcareous garden soil with 1030 mg kg-1 Pb. Remediation had an insignificant effect on microbial respiration in acidic soil induced by sequential additions of glucose, micro-cellulose, starch and alfa-alfa sprout powder (mimicking litter components, C-cycle). In contrast, remediation of calcareous soil reduced cumulative CO2 production after glucose (simple) and alfalfa (complex substrate) addition, by up to 40%. Remediation reduced the nitrification rate (denoting the N-cycle) in acidic soil by 30% and halved nitrification in calcareous soil. Remediation in both soils slightly or positively affected dehydrogenase and ß-glucosidase activity (associated with C-cycle), and decreased urease activity (N-cycle). Generally, EDTA remediation modestly interfered with substrate utilisation in acidic soil. A more prominent effect of remediation on the functioning of calcareous soil could largely be attributed to the use of a higher EDTA dose (30 vs. 100 mmol kg-1, respectively).


Assuntos
Ácido Edético/química , Recuperação e Remediação Ambiental/métodos , Metais/análise , Nitrificação , Microbiologia do Solo , Solo/química , Oxirredutases/metabolismo , Poluentes do Solo/análise , Urease/metabolismo , beta-Glucosidase/metabolismo
15.
Chemosphere ; 193: 726-736, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175400

RESUMO

Soil remediation mitigates hazards from contaminants but could deprive soils of initial biota and enzymes. Historically contaminated acidic soil from Arnoldstein (Austria) and calcareous soil from Meza (Slovenia) were washed with 30 and 100 mmol kg-1 ethylenediaminetetraacetate (EDTA) to remove 78 and 60% of Pb as a main pollutant. Remediation of the Arnoldstein soil decreased urease activity and increased ß-glucosidase activity, measured in a 15-week experiment. The dehydrogenase activity and microbial gene abundances were not significantly impeded compared to the original soil. Conversely, the use of a high dose of EDTA in the Meza soil, necessary for effective remediation of calcareous soils, resulted in pronouncedly decreased enzyme activities (3.2 times on average) and repressed fungal ITS and increased bacterial 16S rRNA gene abundance. Remediation shifted the microbial community composition in both soils. For revitalisation, the remediated soils were amended with compost, inocula of un-contaminated soil and (Arnoldstein soil) biochar enriched with soil extract. Amendments inconsistently affected the Arnoldstein soil: compost increased the dehydrogenase activity and altered the microbial community composition, biochar enhanced the ß-glucosidase activity, and all amendments decreased the microbial abundance (1.6 times on average). In contrast, amendments efficiently revitalised the remediated Meza soil; compost and soil inoculum returned the enzyme activities back to the baseline in the original soil, increased the fungal abundance above that in the original soil and restored the microbial community composition.


Assuntos
Biota , Carvão Vegetal , Compostagem/métodos , Ácido Edético , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo , Poluentes do Solo/isolamento & purificação , Áustria , Ácido Edético/farmacologia , Metais/farmacologia , Eslovênia , Solo/química , Poluentes do Solo/análise
16.
J Environ Sci (China) ; 53: 248-261, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372749

RESUMO

Cyanobacterial blooms are global phenomena that can occur in calm and nutrient-rich (eutrophic) fresh and marine waters. Human exposure to cyanobacteria and their biologically active products is possible during water sports and various water activities, or by ingestion of contaminated water. Although the vast majority of harmful cyanobacterial products are confined to the interior of the cells, these are eventually released into the surrounding water following natural or artificially induced cell death. Electrochemical oxidation has been used here to damage cyanobacteria to halt their proliferation, and for microcystin degradation under in-vitro conditions. Partially spent Jaworski growth medium with no addition of supporting electrolytes was used. Electrochemical treatment resulted in the cyanobacterial loss of cell-buoyancy regulation, cell proliferation arrest, and eventual cell death. Microcystin degradation was studied separately in two basic modes of treatment: batch-wise flow, and constant flow, for electrolytic-cell exposure. Batch-wise exposure simulates treatment under environmental conditions, while constant flow is more appropriate for the study of boron-doped diamond electrode efficacy under laboratory conditions. The effectiveness of microcystin degradation was established using high-performance liquid chromatography-photodiode array detector analysis, while the biological activities of the products were estimated using a colorimetric protein phosphatase-1 inhibition assay. The results indicate potential for the application of electro-oxidation methods for the control of bloom events by taking advantage of specific intrinsic ecological characteristics of bloom-forming cyanobacteria. The applicability of the use of boron-doped diamond electrodes in remediation of water exposed to cyanobacteria bloom events is discussed.


Assuntos
Cianobactérias , Técnicas Eletroquímicas , Eletrodos , Eutrofização , Microcistinas/química , Boro , Diamante
17.
Chemosphere ; 151: 202-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26943741

RESUMO

EDTA-based remediation is reaching maturity but little information is available on the state of chelant in remediated soil. EDTA soil retention was examined after extracting 20 soil samples from Pb contaminated areas in Slovenia, Austria, Czech Republic and USA with 120 mM kg(-1) Na2H2EDTA, CaNa2EDTA and H4EDTA for 2 and 24 h. On average, 73% of Pb was removed from acidic and 71% from calcareous soils (24 h extractions). On average, 15% and up to 64% of applied EDTA was after remediation retained in acidic soils. Much less; in average 1% and up to the 22% of EDTA was retained in calcareous soils. The secondary emissions of EDTA retained in selected remediated soil increased with the acidity of the media: the TCLP (Toxicity Characteristic Leaching Procedure) solution (average pH end point 3.6) released up to 36% of EDTA applied in the soil (28.1 mmol kg(-1)). Extraction with deionised water (pH > 6.0) did not produce measurable EDTA emissions. Exposing soil to model abiotic (thawing/freezing cycles) and biotic (ingestion by earthworms Lumbricus rubellus) ageing factors did not induce additional secondary emissions of EDTA retained in remediated soil.


Assuntos
Ácido Edético/química , Recuperação e Remediação Ambiental/métodos , Solo/química , Animais , Concentração de Íons de Hidrogênio , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação
18.
J Hazard Mater ; 296: 138-146, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25917691

RESUMO

The Meza Valley, Slovenia, has been contaminated by Pb smelting, resulting in an epidemic of lead poisoning in childhood. The potential of remediation with EDTA soil washing to mitigate the risk from Pb poisoning was investigated by applying the Integrated Exposure Uptake Bio-kinetic (IEUBK) model. Soils from 79 locations were collected and the total and bio-accessible Pb concentrations were determined before and after extraction with 60 mmol kg(-1) EDTA. Extraction reduced the soil Pb concentration in towns of Mezica, Zerjav and Crna by 53, 67 and 62%, respectively, and the concentration of in vitro bio-accessible Pb in the simulated human gastric phase by 2.6-, 3.2- and 2.9-times, respectively. The predictions of the IEUBK model based on Pb contamination data were verified with data on blood Pb levels in children. The IEUBK model predicted that, after soil remediation, the number of locations at which the expected blood Pb level in children was higher than the stipulated 10 µg d L(-1) would decrease by 90, 38 and 91% in the towns of Mezica, Zerjav and Crna, respectively. The results confirmed the feasibility of soil washing with EDTA as an efficient remediation measure in Mezica and Crna and advice for soil capping/removal for the most polluted town of Zerjav.


Assuntos
Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Chumbo/sangue , Modelos Biológicos , Poluentes do Solo/sangue , Solo/química , Disponibilidade Biológica , Criança , Cidades , Ácido Edético/química , Trato Gastrointestinal/metabolismo , Humanos , Chumbo/análise , Valor Preditivo dos Testes , Eslovênia , Solo/normas , Poluentes do Solo/análise
19.
Chemosphere ; 138: 1001-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25577699

RESUMO

Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening.


Assuntos
Recuperação e Remediação Ambiental/métodos , Jardinagem/métodos , Metais Pesados/análise , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Biomassa , Ácido Edético/química , Humanos , Metais Pesados/toxicidade , Poaceae/efeitos dos fármacos , Solo/normas , Poluentes do Solo/toxicidade
20.
Environ Technol ; 35(9-12): 1389-400, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701937

RESUMO

We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).


Assuntos
Ácido Edético/química , Metais Pesados/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Recuperação e Remediação Ambiental , Estudos de Viabilidade , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...